Biphasic Metabolism and Host Interaction of a Chlamydial Symbiont
نویسندگان
چکیده
Chlamydiae are obligate intracellular bacteria comprising well-known human pathogens and ubiquitous symbionts of protists, which are characterized by a unique developmental cycle. Here we comprehensively analyzed gene expression dynamics of Protochlamydia amoebophila during infection of its Acanthamoeba host by RNA sequencing. This revealed a highly dynamic transcriptional landscape, where major transcriptional shifts are conserved among chlamydial symbionts and pathogens. Our data served to propose a time-resolved model for type III protein secretion during the developmental cycle, and we provide evidence for a biphasic metabolism of P. amoebophila during infection, which involves energy parasitism and amino acids as the carbon source during initial stages and a postreplicative switch to endogenous glucose-based ATP production. This fits well with major transcriptional changes in the amoeba host, where upregulation of complex sugar breakdown precedes the P. amoebophila metabolic switch. The biphasic chlamydial metabolism represents a unique adaptation to exploit eukaryotic host cells, which likely contributed to the evolutionary success of this group of microbes. IMPORTANCE Chlamydiae are known as major bacterial pathogens of humans, causing the ancient disease trachoma, but they are also frequently found in the environment where they infect ubiquitous protists such as amoebae. All known chlamydiae require a eukaryotic host cell to thrive. Using the environmental chlamydia Protochlamydia amoebophila within its natural host, Acanthamoeba castellanii, we investigated gene expression dynamics in vivo and throughout the complete chlamydial developmental cycle for the first time. This allowed us to infer how a major virulence mechanism, the type III secretion system, is regulated and employed, and we show that the physiology of chlamydiae undergoes a complete shift regarding carbon metabolism and energy generation. This study provides comprehensive insights into the infection strategy of chlamydiae and reveals a unique adaptation to life within a eukaryotic host cell.
منابع مشابه
Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis.
Chlamydia trachomatis is one of the most common bacterial pathogens and is the etiological agent of debilitating sexually transmitted and ocular diseases in humans. The organism is an obligate intracellular prokaryote characterized by a highly specialized biphasic developmental cycle. We have performed genomic transcriptional analysis of the chlamydial developmental cycle. This approach has led...
متن کاملA Molecular Survey on Chlamydial Infection in Pet and Zoo Captive Reptiles in Tehran
Introduction: Chlamydiosis is a worldwide zoonotic disease caused by different microorganisms in the order Chlamydiales. The aim of this study was to detect and determine the prevalence of Chlamydia infection in pet and zoo reptiles in Tehran, Iran. Materials and Methods: In a period of 10 months from April 2015 to February 2016, swab samples were collected from cloaca and conjunctiva of 130 pe...
متن کاملShifts in sponge-microbe mutualisms across an experimental irradiance gradient
To investigate how the interactions between the closely related sponge species Aplysina cauliformis and Aplysina fulva and their symbiotic microbial communities vary under changing environmental conditions, we conducted a manipulative shading experiment with treatments spanning a gradient of 6 irradiances. In A. cauliformis, there was a tight coupling of symbiont and host metabolism across trea...
متن کاملAmphisomal route of MHC class I cross-presentation in bacteria-infected dendritic cells.
Dendritic cells (DCs) are among the first professional APCs encountered by the obligate intracellular bacterium Chlamydia during infection. Using an established mouse bone marrow-derived DC line, we show that DCs control chlamydial infection in multiple small inclusions characterized by restricted bacterial growth, impaired cytosolic export of the virulence factor chlamydial protease-like activ...
متن کاملFluorescence Lifetime Imaging Unravels C. trachomatis Metabolism and Its Crosstalk with the Host Cell
Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H ...
متن کامل